113 research outputs found

    Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: A feasibility study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is now sufficient evidence that using a rehabilitation protocol involving motor imagery (MI) practice in conjunction with physical practice (PP) of goal-directed rehabilitation tasks leads to enhanced functional recovery of paralyzed limbs among stroke sufferers. It is however difficult to confirm patient engagement during an MI in the absence of any on-line measure. Fortunately an EEG-based brain-computer interface (BCI) can provide an on-line measure of MI activity as a neurofeedback for the BCI user to help him/her focus better on the MI task. However initial performance of novice BCI users may be quite moderate and may cause frustration. This paper reports a pilot study in which a BCI system is used to provide a computer game-based neurofeedback to stroke participants during the MI part of a protocol.</p> <p>Methods</p> <p>The participants included five chronic hemiplegic stroke sufferers. Participants received up to twelve 30-minute MI practice sessions (in conjunction with PP sessions of the same duration) on 2 days a week for 6 weeks. The BCI neurofeedback performance was evaluated based on the MI task classification accuracy (CA) rate. A set of outcome measures including action research arm test (ARAT) and grip strength (GS), was made use of in assessing the upper limb functional recovery. In addition, since stroke sufferers often experience physical tiredness, which may influence the protocol effectiveness, their fatigue and mood levels were assessed regularly.</p> <p>Results</p> <p>Positive improvement in at least one of the outcome measures was observed in all the participants, while improvements approached a minimal clinically important difference (MCID) for the ARAT. The on-line CA of MI induced sensorimotor rhythm (SMR) modulation patterns in the form of lateralized event-related desynchronization (ERD) and event-related synchronization (ERS) effects, for novice participants was in a moderate range of 60-75% within the limited 12 training sessions. The ERD/ERS change from the first to the last session was statistically significant for only two participants.</p> <p>Conclusions</p> <p>Overall the crucial observation is that the moderate BCI classification performance did not impede the positive rehabilitation trends as quantified with the rehabilitation outcome measures adopted in this study. Therefore it can be concluded that the BCI supported MI is a feasible intervention as part of a post-stroke rehabilitation protocol combining both PP and MI practice of rehabilitation tasks. Although these findings are promising, the scope of the final conclusions is limited by the small sample size and the lack of a control group.</p

    Efficacy of motor imagery in post-stroke rehabilitation: a systematic review

    Get PDF
    BACKGROUND: Evaluation of how Motor Imagery and conventional therapy (physiotherapy or occupational therapy) compare to conventional therapy only in their effects on clinically relevant outcomes during rehabilitation of persons with stroke. DESIGN: Systematic review of the literature METHODS: We conducted an electronic database search in seven databases in August 2005 and also hand-searched the bibliographies of studies that we selected for the review.Two reviewers independently screened and selected all randomized controlled trials that compare the effects of conventional therapy plus Motor Imagery to those of only conventional therapy on stroke patients.The outcome measurements were: Fugl-Meyer Stroke Assessment upper extremity score (66 points) and Action Research Arm Test upper extremity score (57 points).Due to the high variability in the outcomes, we could not pool the data statistically. RESULTS: We identified four randomized controlled trials from Asia and North America. The quality of the included studies was poor to moderate. Two different Motor imagery techniques were used (three studies used audiotapes and one study had occupational therapists apply the intervention). Two studies found significant effects of Motor Imagery in the Fugl-Meyer Stroke Assessment: Differences between groups amounted to 11.0 (1.0 to 21.0) and 3.2 (-4 to 10.3) respectively and in the Action Research Arm Test 6.1 (-6.2 to 18.4) and 15.8 (0.5 to 31.0) respectively. One study did not find a significant effect in the Fugl-Meyer Stroke Assessment and Color trail Test (p = 0.28) but in the task-related outcomes (p > 0.001). CONCLUSION: Current evidence suggests that Motor imagery provides additional benefits to conventional physiotherapy or occupational therapy. However, larger and methodologically sounder studies should be conducted to assess the benefits of Motor imagery

    Comparison of embedded and added motor imagery training in patients after stroke: Study protocol of a randomised controlled pilot trial using a mixed methods approach

    Get PDF
    Copyright @ 2009 Schuster et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Two different approaches have been adopted when applying motor imagery (MI) to stroke patients. MI can be conducted either added to conventional physiotherapy or integrated within therapy sessions. The proposed study aims to compare the efficacy of embedded MI to an added MI intervention. Evidence from pilot studies reported in the literature suggests that both approaches can improve performance of a complex motor skill involving whole body movements, however, it remains to be demonstrated, which is the more effective one.Methods/Design: A single blinded, randomised controlled trial (RCT) with a pre-post intervention design will be carried out. The study design includes two experimental groups and a control group (CG). Both experimental groups (EG1, EG2) will receive physical practice of a clinical relevant motor task ('Going down, laying on the floor, and getting up again') over a two week intervention period: EG1 with embedded MI training, EG2 with MI training added after physiotherapy. The CG will receive standard physiotherapy intervention and an additional control intervention not related to MI.The primary study outcome is the time difference to perform the task from pre to post-intervention. Secondary outcomes include level of help needed, stages of motor task completion, degree of motor impairment, balance ability, fear of falling measure, motivation score, and motor imagery ability score. Four data collection points are proposed: twice during baseline phase, once following the intervention period, and once after a two week follow up. A nested qualitative part should add an important insight into patients' experience and attitudes towards MI. Semi-structured interviews of six to ten patients, who participate in the RCT, will be conducted to investigate patients' previous experience with MI and their expectations towards the MI intervention in the study. Patients will be interviewed prior and after the intervention period.Discussion: Results will determine whether embedded MI is superior to added MI. Findings of the semi-structured interviews will help to integrate patient's expectations of MI interventions in the design of research studies to improve practical applicability using MI as an adjunct therapy technique

    Mental practice-based rehabilitation training to improve arm function and daily activity performance in stroke patients: a randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over 50% of patients with upper limb paresis resulting from stroke face long-term impaired arm function and ensuing disability in daily life. Unfortunately, the number of effective treatments aimed at improving arm function due to stroke is still low. This study aims to evaluate a new therapy for improving arm function in sub-acute stroke patients based on mental practice theories and functional task-oriented training, and to study the predictors for a positive treatment result. It is hypothesized that a six-week, mental practice-based training program (additional to regular therapy) targeting the specific upper extremity skills important to the individual patient will significantly improve both arm function and daily activity performance, as well as being cost effective.</p> <p>Methods/design</p> <p>One hundred and sixty sub-acute stroke patients with upper limb paresis (MRC grade 1–3) will participate in a single-blinded, multi-centre RCT. The experimental group will undertake a six-week, individually tailored therapy regime focused on improving arm function using mental practice. The control group will perform bimanual upper extremity exercises in addition to regular therapy. Total contact time and training intensity will be similar for both groups. Measurements will be taken at therapy onset, after its cessation and during the follow-up period (after 6 and 12 months). Primary outcome measures will assess upper extremity functioning on the ICF level of daily life activity (Wolf Motor Function Test, Frenchay Arm Test, accelerometry), while secondary outcome measures cover the ICF impairment level (Brunnstrom-Fu-Meyer test). Level of societal participation (IPA) and quality of life (EuroQol; SS-Qol) will also be tested. Costs will be based on a cost questionnaire, and statistical analyses on MAN(C)OVA and GEE (generalized estimated equations).</p> <p>Discussion</p> <p>The results of this study will provide evidence on the effectiveness of this mental practice-based rehabilitation training, as well as the cost-effectiveness.</p> <p>Trial registration</p> <p>Current Controlled Trials [ISRCTN33487341)</p

    Effects of mental practice embedded in daily therapy compared to therapy as usual in adult stroke patients in Dutch nursing homes: design of a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mental practice as an additional cognitive therapy is getting increased attention in stroke rehabilitation. A systematic review shows some evidence that several techniques in which movements are rehearsed mentally might be effective but not enough to be certain. This trial investigates whether mental practice can contribute to a quicker and/or better recovery of stroke in two Dutch nursing homes. The objective is to investigate the therapeutic potential of mental practice embedded in daily therapy to improve individually chosen daily activities of adult stroke patients compared to therapy as usual. In addition, we will investigate prognostic variables and feasibility (process evaluation).</p> <p>Methods</p> <p>A randomised, controlled, observer masked prospective trial will be conducted with adult stroke patients in the (sub)acute phase of stroke recovery. Over a six weeks intervention period the control group will receive multi professional therapy as usual. Patients in the experimental group will be instructed how to perform mental practice, and will receive care as usual in which mental practice is embedded in physical, occupation and speech therapy sessions. Outcome will be assessed at six weeks and six months. The primary outcome measure is the patient-perceived effect on performance of daily activities as assessed by an 11-point Likert Scale. Secondary outcomes are: Motricity Index, Nine Hole Peg Test, Barthel Index, Timed up and Go, 10 metres walking test, Rivermead Mobility Index. A sample size of the patients group and all therapists will be interviewed on their opinion of the experimental program to assess feasibility. All patients are asked to keep a log to determine unguided training intensity.</p> <p>Discussion</p> <p>Advantages and disadvantages of several aspects of the chosen design are discussed.</p> <p>Trial registration</p> <p>ISRCTN27582267</p

    Primary Role of Functional Ischemia, Quantitative Evidence for the Two-Hit Mechanism, and Phosphodiesterase-5 Inhibitor Therapy in Mouse Muscular Dystrophy

    Get PDF
    Background. Duchenne Muscular Dystrophy (DMD) is characterized by increased muscle damage and an abnormal blood flow after muscle contraction: the state of functional ischemia. Until now, however, the cause-effect relationship between the pathogenesis of DMD and functional ischemia was unclear. We examined (i) whether functional ischemia is necessary to cause contraction-induced myofiber damage and (ii) whether functional ischemia alone is sufficient to induce the damage. Methodology/Principal Findings. In vivo microscopy was used to document assays developed to measure intramuscular red blood cell flux, to quantify the amount of vasodilatory molecules produced from myofibers, and to determine the extent of myofiber damage. Reversal of functional ischemia via pharmacological manipulation prevented contraction-induced myofiber damage in mdx mice, the murine equivalent of DMD. This result indicates that functional ischemia is required for, and thus an essential cause of, muscle damage in mdx mice. Next, to determine whether functional ischemia alone is enough to explain the disease, the extent of ischemia and the amount of myofiber damage were compared both in control and mdx mice. In control mice, functional ischemia alone was found insufficient to cause a similar degree of myofiber damage observed in mdx mice. Additional mechanisms are likely contributing to cause more severe myofiber damage in mdx mice, suggestive of the existence of a ‘‘two-hit’ ’ mechanism in the pathogenesis of this disease. Conclusions/Significance. Evidence was provided supporting the essential role of functional ischemia in contraction-induced myofiber damage in mdx mice. Furthermore, the first quantitative evidence for the ‘‘two-hit’ ’ mechanism in this disease was documented. Significantly, the vasoactive dru
    • …
    corecore